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Editor’s Note: 
 
Just three years after writing the paper on equivalence class testing, Bill recommends that 
we need to add more rigor to the testing process.  In this paper seven more breakthroughs 
are described. 
 
1. The first step in the process is to create a Cause-Effect Graph of the logic.  This is the 
first application of Model Based Testing in software. 
 
2. He recognizes that the act of graphing the specification actually is a test of the 
specification itself – i.e., we must test the specification, not just the code derived from the 
specification. 
 
3. He describes how to create a set of tests that are necessary and sufficient to test the 
code from a black box perspective.   The process eliminates redundancy in the test library 
while maximizing coverage. 
 
4. He extends the concepts from the hardware version of the algorithms to cover software 
specific issues.  The issue is constraints on the inputs – e.g., exclusive, one and only one.  
Today these are called preconditions and post conditions in defining use cases.  The same 
concepts are also applied today in design by contract. 
 
5. He introduces the concept of “Untestable” variations.  These are variations which, due 
to the constraints and overall logic, cannot be sensitized to an observable point.  The 
result is that you need to insert diagnostic probe points into the code in order to make 
sure that you got the right answer for the right reason.  The process guides you to where 
you need to insert the diagnostics. 
 
6. The test case design rules do not just address what input combinations to test.  They 
also identify the expected results.  This is the first test case design “Oracle”. 
 
7. He automates the test design process in a tool called TELDAP – TEst Library Design 
Automation Program.  This is one of the first software test case design tools.  It addresses 
the problem of ensuring that the set of tests are not only optimized but thoroughly 
documented. 
 
When the process and the tool were applied to projects they resulted in a 40% to 50% 
reduction in the cost of the functional test effort while increasing coverage by 30% to 
40%.  This was as compared to equivalence class testing. 
 
 
Richard Bender 
rbender@BenderRBT.com 
October 2006 
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ABSTRACT 

 
Given the task of developing a test library to exercise a program, the tester organizes his 
job into three phases: (1) identifying the functions of the program, (2) designing a test 
library that covers these functions, and (3) writing and debugging the test cases which 
make up this library. This paper describes an experimental technique for automating and 
disciplining the second phase. 
 
A two-stage process is presented. First, the functions of the subject program are 
structured in the form of a Boolean graph. This graph yields an unambiguous definition 
of the functional variations eligible for testing. Second, the graph is used as input to an 
algorithm which synthesizes those test patterns that will exercise all functional variations 
and will distinguish a good program from a bad one. This algorithm is implemented in an 
APL\360 program named TELDAP (TEst Library Design Automation Program). 
 
Two libraries are defined by this tool. One seeks minimum functional coverage in each 
test and is appropriate for new-function testing. The other seeks the minimum number of 
tests and is best suited to regression testing of old function. The documentation for each 
library identifies the inputs to be invoked or suppressed in each test, the outputs expected 
from each test if correctly executed, and the faulty functional variations detectable by 
each test. 
 
Boolean graph 
Test pattern generation 
21   Programming 
22   Reliability-Testing 
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INTRODUCTION 
 
Typically, the development of program test libraries proceeds something like this. A set 
of program specifications, together with a program listing, serve as input. They are 
analyzed for the purpose of generating an exhaustive list of the product's functions. A set 
of tests is then defined to exercise the identified functions. Finally, when these tests have 
been written and debugged, the test library is ready for use. 
 
Throughout this process manual effort and artistic judgment predominate, and although 
the resource investment is substantial, the resulting test library is generally inefficiently 
structured and inaccurately documented. This library, or a subset of it, is executed many 
times during the life of the product; therefore, its inefficiency repeatedly absorbs 
unnecessary human and machine resources. Furthermore, since this library is the 
fundamental tool for assessing program quality, its documentation errors color this 
assessment. 
 
What can be done to improve this picture? At the leading edge of the process, work is in 
progress on the development of formal specification languages and on experimentation 
with them as a substitute for natural languages. SPEC3, APL\3605 and ULD11 have been 
considered in this role. Methods of formal path analysis within programs are also being 
explored. The works of Bender and Pottorff2, Herman and Pearson10 and Hess8, 9 are 
illustrative. At the trailing edge of the process, test cases are being mechanically 
generated to take advantage of standardized routines.12 Where formal syntactical 
(structural) rules exist for a programming language and we are content to ignore the 
semantics (the meaning) of the language structures, then the whole process can be 
automated6. However, the resultant test library will generally be neither necessary nor 
sufficient. It will not be necessary because of the redundant testing of certain functions; it 
will not be sufficient because there is no assurance that all interactive mixtures of 
function will be tested. 
 
The study this paper is reporting has been aimed at the middle of the process -- the 
disciplined design of a test library given a rigorous description of the functions to be 
tested. The objective is more precisely stated as follows: 
 

Given an unambiguous and non-redundant description of a set of program 
functions, design the test library which is necessary and sufficient to exhaustively 
exercise these functions and distinguish a good program from a bad one. 

 
The study has yielded an experimental process that is described in succeeding sections. 
The section on Input considers the use of a Boolean graph as the vehicle for rigorously 
describing the structure of the input functions. The section on Process addresses the 
algorithm that governs the way in which the graph is systematically massaged to 
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synthesize the design of each test library. (Two distinct libraries are synthesized.) The 
section on Output identifies the kinds of output information which constitute a complete 
test library design. 
 
 

INPUT 
 
The fundamental step in the software testing process is the identification of those 
functional elements that are eligible for testing. This identification occurs in two stages: 
(1) the interpretation of the specifications and the program to deduce the functions 
described in the former and implemented in the latter, and (2) the dissection of these 
functions into the functional elements whose composite totally, but without redundancy, 
represents the functional capability of the product. The identified elements serve three 
purposes: first, to give perspective to the test objectives; second, to establish the context 
of the test plan; and third, to act as a yardstick for measuring test coverage. 
 
Cause and Effect Graph 
 
Given a set of functions which represents our best interpretation of the true meaning of 
the specifications and of the program, we express the structure of these functions in the 
form of a Boolean graph. Since a function can be defined as a logical cause-and-effect 
relationship, this graph is called a cause-and-effect graph. It is generated as follows: 
 

• List all the directly invokable causes down one side of a sheet of paper and all 
the directly observable effects down the other side. 

 
• Join cause to effect by means of a structure of logical connectives that 

represents the functional relationships decreed by the analyst's interpretation 
of the specifications and program. 

 
• The eligible connectives are AND, NAND, OR, NOR, NOT and DIRECT. 

Their notations, as used in this paper, are A, A, O, O, N and D, respectively. 
The DIRECT connective expresses the simplest relationship: a single cause 
joined to a single effect with no negation or interaction with other causes. 

 
• Wherever a known cause leads to an unknown effect or a known effect is not 

traceable to a known cause, a dummy node is inserted in the graph to 
represent the unknown. Ultimately this uncertainty must be resolved in order 
to write the test case that invokes the cause or observes the effect. In the 
interim, the explicit inclusion of the unknown node in the graph permits the 
test library design to proceed. 

 
• At this time only combinations of causes, not permutations, can be portrayed. 

Although the latter is not quantitatively significant in most software testing, it 
is a worthy candidate for follow-on study. 
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There are two additional considerations in connection with this graph: range values and 
cause constraints. When specifications describe both the functional meaning of a 
parameter as well as the range of acceptable values for this parameter, we have a problem 
representing both kinds of information in a common graph. On the other hand, if we 
separate them, then two libraries would have to be designed, one to test functional 
capability and the other to test the range of this capability. To avoid this we treat certain 
range values as pseudo-functions that are subordinate to the functions to which they 
apply. 
 
The invokable causes may be constrained in one of these ways: 
 

• Causes may be mutually-exclusive, meaning that at most one of the set may 
be invoked in anyone test. 

 
• Causes may be all-inclusive, meaning that at least one of the set must be 

invoked in every test. 
 

• Causes may be both mutually-exclusive and all-inclusive, meaning that one 
and only one of the set must be invoked in every test. 

 
A particular cause can be party to only one such constraint. These constraints are 
indicated in the cause-and-effect graph by the letters E, I and U, respectively. 
 
Figure 1 presents the cause-and-effect graph for the illustrative set of functions at the top 
of this figure. In the interest of simplicity only a subset of the eligible connectives and 
constraints is incorporated into this example. A more comprehensive example appears in 
Appendix A. 
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IF cause 1 OR cause 2 THEN effect 4. 
IF NOT BOTH cause 2 AND cause 3 THEN effect 5. 
Causes 1 and 2 are mutually-exclusive. 

 
Figure 1. A sample set of program functions and the 

corresponding cause-and-effect graph. 
 

 
Note that the cause-and-effect graph of Figure 1 includes explicit expression of the lattice 
form of structure in which a single cause leads to multiple effects. Since the graph is the 
input to the library design algorithm, this lattice structure is of necessity considered in the 
design process. In contrast to this is the tree structure of traditional functional variation 
lists which does not explicitly state the commonality of a single cause leading to multiple 
effects. Instead, it is expressed implicitly by replicating the common cause in all of the 
affected variations. When such a functional variation list is the input to the library design 
process, it is the exception, rather than the rule, for this implied commonality to be 
recognized. 
 
Functional Elements 
 
The functional elements of a cause-and-effect graph are the nodes together with the line 
segments connecting them. Each node represents a cause, an effect, or, in turn, both. Each 
segment expresses a primitive dependency relationship -- that is, a conditional statement 
(IF...THEN...) involving a single cause and a single effect. 
 
Segments which converge on a common node represent an interactive dependency -- that 
is, a conditional statement involving multiple causes and a single effect. On the other 
hand, segments which diverge from a common node represent the mutual dependency of 
multiple effects on a common cause. 
 
Each node can assume one of two states: 0 or 1. “0” means that the cause/effect is absent; 
while “1” means that it is present. If the state of a node is irrelevant or unknown, this is 
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noted in test patterns by an “X”. The nodes are arbitrarily numbered; the only restrictions 
are that the numbers must begin at 1 and be contiguous. 
 
What are the functional elements that can fail and are therefore eligible for testing? In a 
previous paper4 the "distinctive functional variation” was proposed as this element. A 
function was defined earlier as a logical cause-and-effect relationship. Each variant of a 
function is such a relationship with the state (presence or absence) of each cause and 
effect specified. Consequently, every line in a truth table for a particular function is a 
variant of that function. Distinctive variants are those at the finest possible level of 
resolution -- that is, those which cannot be reduced to more elementary variations 
because they contain some unique cause or effect state not represented in the more 
elementary ones. 
 
Since these distinctive functional variations encompass both states of all causes and all 
effects, they comprise the necessary and sufficient scope of testing to detect all functional 
errors. Put in the context of the cause-and-effect graph, each primitive dependency (each 
segment) along with each interactive dependency (each convergence of segments) is a 
distinctive functional variation eligible to be tested. 
 
Faulty variations are traceable to faulty segments: one variation to one segment for 
primitive variations and one variation to multiple segments (anyone of which may be 
faulty) for interactive variations. Since all variation failures can be mapped into segment 
failures, either of these could be addressed by the test library. For reasons of efficiency 
and convention we use the variations. 
 
Statements 
 
The cause-and-effect graph is entered into the test library design process via a series of 
input statements drawn from the types shown in Figure 2. The causes and effects are 
filled in using the appropriate node numbers from the graph. The total node count is 
entered through the NODES statement; this statement must precede all others. Figure 3 
shows that set of statements which embodies the cause-and-effect graph of Figure 1. 
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NODES number 
causes AND effect 
causes OR effect 
causes NAND effect 
causes NOR effect 
cause DIRECT effect 
cause NOT effect 
EXCLUSIVE causes 
INCLUSIVE causes 
EXCLUSIVE ∆ INCLUSIVE causes 
INVOKABLE causes 
OBSERVABLE effects 

 
Notes: 
-   Upper-case words are required keywords. 
-   Lower-case words are replaced by numeric scalars or vectors. 

 
Figure 2. The types of TELDAP input statements. 

 
 

NODES 5 
1  2  OR  4 
2  3  NAND  5 
EXCLUSIVE 1  2 
INVOKABLE  1  2  3 
OBSERVABLE  4  5 

 
Figure 3. The TELDAP input for the sample problem. 

 
 
 
PROCESS 
 
Simply stated, the test libraries are designed by systematically tracing through the cause-
and-effect graph and synthesizing those patterns of invokable causes which ensure that 
every faulty variation will lead to an erroneous pattern of observable effects. The library 
design algorithm described later in this paper assumes only single occurrences of faulty 
variations. It is probable that most multiple fault situations will, in fact, be detected, but it 
is theoretically possible for some of them to cancel each other out and go undetected. 
 
A “test pattern” identifies those causes to be invoked, those to be suppressed and those to 
be ignored. In addition, it identifies the observable effects that can be expected if no 
faulty variations are encountered. Test patterns can be categorized as "feasible”, 
"meaningful" or "unique”. 
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* A test pattern is feasible as long as it does not violate the exclusive and 
   inclusive constraints. 
 
* A test pattern is meaningful if it serves to distinguish a good program from a 
   bad one. 
 
* A test pattern is unique if it detects a distinct set of faulty variations. 

 
Test libraries can be similarly categorized as feasible, meaningful or unique to reflect the 
type of test patterns they contain. Two useful subsets of the unique library can be defined 
as: 
 

* The set of unique tests which covers all detectable faults with minimal 
   redundancy and with minimal coverage per test is the new-function test library. 
 
* The set of unique tests which covers all detectable faults with the near –minimal 
   number of tests is the old -function test library. 

 
 
Brute-Force Approach 
 
Let us now consider a systematic procedure for determining sets of feasible, meaningful, 
unique, new-function and old-function test patterns. Such a procedure can be illustrated 
by designing the test libraries for the cause -and -effect graph of Figure 1. 
 

* First, identify the distinctive functional variations and number them for 
   subsequent reference. This list appears in Figure 4. 
 
* Second, list all possible combinations of the invokable causes. In Figure 1 there 
   are three of these causes, each of which can be invoked, suppressed or ignored. 
   Consequently, there are 33 or 27 possible test patterns to be considered. 
 
* Third, strike out those patterns that are infeasible due to exclusion or inclusion 
   constraints on the invokable causes. Figure 5 lists the nine test patterns which 
   violate the exclusion constraint between causes 1 and 2. The remaining test 
   patterns (27-9 = 18) comprise the feasible test library. 
 
* Fourth, within the context of each feasible test pattern determine which 
   variation faults will propagate through the cause-and-effect graph to generate 
   erroneous effects. Enter these faults in a "functional matrixl”4 of the type shown 
   on the right side of Figure 6. A “T” indicates that a fault in this variation is  
   detected by this test. 
 
* Fifth, eliminate those patterns in which all of the effects are indeterminate since 
   this makes it impossible to judge which effects are erroneous. Also eliminate 
   those patterns which, though determinate, do not detect any variation faults. 
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   Figure 5 lists the indeterminate patterns and Figure 6 the ineffectual patterns for 
   our sample problem. Since there are eight such patterns, we are left with 18-8 or 
   10 tests in the meaningful test library. 
 
* Sixth, arbitrarily eliminate all but one of each set of equivalent patterns –  
   equivalent because they detect the same faulty variations as evidenced by the  
   functional matrix. The discarded equivalent patterns are also listed in Figure 6.  
   The remaining test patterns (10-2 = 8) comprise the unique test library. 
 
* Seventh, by trial and error select the set of unique tests that minimizes  
   redundancy and also disperses the fault coverage across as many tests as 
   possible without sacrificing any of that coverage. This is the new-function test 
   library documented in Figure 7. 
 
* Eighth, again by trial and error choose the set of unique tests which compresses 
   the fault coverage into as few tests as possible, also without sacrificing 
   coverage. This is the old -function test library documented in Figure 7. 
 

 
 
 

1. If cause 1 present then effect 4 present. 
2. If cause 2 present then effect 4 present. 
3. If causes 1 and 2 absent then effect 4 absent. 
4. If cause 2 absent then effect 5 present. 
5. If cause 3 absent then effect 5 present. 
6. I f causes 2 and 3 present then effect 5 absent. 

 
Figure 4. List of distinctive functional variations for the sample problem. 
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This brute -force procedure illustrates the distinctions between the different kinds of test 
libraries and shows that relatively few tests (4) out of all the combinatorial possibilities 
(27), and all the feasible tests (18), will exhaustively exercise the functions of this 
product. Clearly, the brute-force approach is impractical for solving problems of real-
world magnitude. A significantly more efficient technique has been implemented in an 
experimental program called TELDAP (TEst Library Design Automation Program). A 
description of this program follows. 
 
TELDAP 
 
TELDAP's predecessors were techniques for generating test patterns for the logic circuits 
in hardware. The application of these techniques, as they stand, to software testing is 
precluded by the following shortcomings: 
 

1. Feasibility constraints on the cause patterns, such as those imposed by 
mutually-exclusive and all-inclusive causes, are not recognized. 
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2. Invokable causes are not distinguished from primitive (primary) causes. This 
distinction is needed to avoid specifying test inputs at a lower cause level than 
necessary. 
 
3. Observable effects are not distinguished from end (primary) effects. This 
distinction is needed to avoid the propagation of faults to higher effect levels than 
necessary, which, in turn, would require specification of unnecessary input states. 
 
4. In hardware testing the elements of the Boolean graph that may be "stuck-at-l" 
or "stuck-at-0" are the potentially faulty elements. However, in software testing 
the Boolean graph is an intermediary for expressing the logical structure of the 
functions to be tested, and the functional significance of faulty graph elements is 
not readily apparent. Therefore, it is preferable that the distinctive functional 
variations be considered the potentially faulty elements and that determining the 
truth or falsity of these variations be the purpose of the test library. 
 
5. A test library that emphasizes minimal coverage per test while avoiding 
unnecessary redundancy is not defined. This emphasis is advisable in a library to 
be used in the early stages of new-function testing. It is also useful in localizing 
problems found during old-function testing. 
 
6. It would not be practical to design test libraries for cause-and-effect graphs of 
more than 100 variations because of memory space requirements. Yet problems 
exceeding this size are common in software testing. 

 
Nevertheless, since there is considerable overlap of hardware and software needs, a 
hardware method7 was adopted as the starting point for experimentation in the software 
environment. This method was selected because of its simplicity, its clarity of description 
and its orientation toward programmed implementation. However, it was soon found to 
be prohibitively expensive, even for experimental purposes, and that algorithm was 
abandoned in favor of one which uses the "path sensitizing”1 approach. 
 
A precise APL\360 description of the algorithm implemented in TELDAP is given in 
Appendix B. Its general organization is: 
 

1. The input statements are translated into notations in an internal cause-and-
effect matrix. 
 
2. The distinctive functional variations which represent the entire cause-and -
effect graph are identified. 
 
3. The path(s) from the causes to the observable dependent effects are defined. 
 
4. The cause/effect states that sensitize these paths so that every detectable fault is 
propagated to an observable effect are synthesized. (An undetectable fault is noted 
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by the absence of a T in the appropriate column of the functional matrix generated 
in step 7.) 
 
5. Those causes /effects whose states are implied by a particular sensitized path, 
although not immediately within that path, are determined. 
 
6. The resulting test patterns are then compared with each other to eliminate those 
that are totally contained within other patterns. The patterns that survive this 
process cover all detectable faults in the maximal number of test patterns, 
excepting those that are wholly redundant. This is the new-function test library. 
 
7. The functional matrix for this set of test patterns is generated by determining 
which patterns synthesized in steps 4 and 5 appear in each surviving pattern of 
step 6. 
 
8. Now the patterns from step 6 are merged, wherever consistency permits, to 
minimize the number of discrete patterns without sacrificing fault coverage. 
These merged patterns cover all the detectable faults in a near -minimal number 
of test patterns. This is the old –function test library. 
 
9. The functional matrix for this set of test patterns is generated by determining 
which patterns synthesized in steps 4 and 5 are contained within the patterns 
formed in step 8. 

 
TELDAP has successfully eliminated the first five drawbacks discussed earlier. 
Regarding the sixth one, the picture is clouded. The current version of TELDAP would 
require about 35 minutes of Model 50 CPU time and 20K bytes of storage for a 100 
variation graph. The time requirement would be reduced significantly (probably by an 
order of magnitude) by translating the APL program into a compilable language. (Batch 
execution is adequate.) Given this improvement, the time and space requirements for a 
100 variation graph would be quite modest. However, both requirements increase roughly 
as the square of the number of variations; therefore, for problems of 500 to 5000 
variations the TELDAP algorithm, as it stands, may be economically impractical. 
However, there is reason for optimism that a solution to the performance problem is 
within our reach. Improvements in the existent algorithm are possible; complexity was 
consciously avoided in the prototype version since proof of feasibility was the prime 
objective. It is also possible that a fundamentally more efficient algorithm will emerge 
from the current work of hardware logicians. Over and above these potential 
improvements in the algorithm is the generally improved economic picture due to 
advances in the speed and memory size of computers for a given dollar investment. 
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OUTPUT 
 
TELDAP produces four kinds of output information: 
 

1. A list of the distinctive functional variations eligible for testing. 
 
2. A pattern of the causes to be invoked or suppressed for each test. 
 
3. A pattern of the effects to be observed in a correctly executed test. 
 
4. A pattern of the faulty variations potentially responsible for a failing test. 

 
 
The first type of information is generated once at the outset of each TELDAP execution. 
The remaining three kinds of information are the output for each of two test libraries 
designed by TELDAP. 
 
One of these libraries is oriented toward the testing of new error-prone functions and 
therefore emphasizes minimal fault coverage within each test. The test patterns and the 
functional matrix for this library are derived from Steps 6 and 7 of the TELDAP process 
described in the preceding section. 
 
The focal point of the other library is regression testing of old and presumably error-free 
functions; consequently, it seeks maximum fault coverage within each test. Steps 8 and 9 
of the TELDAP process are the source of the test patterns and functional matrix for this 
library. 
 
Figures 8, 9 and 10 illustrate the format of the output documentation. A given test is 
recorded in corresponding rows of the three matrices that represent each library. The data 
in these figures is for the sample problem defined by the cause-and-effect graph of Figure 
1. 
 

FUNCTIONAL VARIATIONS: 
 
1. IF CAUSE(S) 1 2 ABSENT THEN EFFECT 4 ABSENT 
2. IF CAUSE(S) 1 PRESENT THEN EFFECT 4 PRESENT 
3. IF CAUSE(S) 2 PRESENT THEN EFFECT 4 PRESENT 
4. IF CAUSE(S) 2 3 PRESENT THEN EFFECT 5 ABSENT 
5. IF CAUSE(S) 2 ABSENT THEN EFFECT 5 PRESENT 
6. IF CAUSE(S) 3 ABSENT THEN EFFECT 5 PRESENT 

 
Figure 8. The distinctive functional variations defined by TELDAP. 
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THIS LIBRARY CONTAINS 5 TESTS DOCUMENTED IN CORRESPONDING 
ROWS OF THE FOLLOWING THREE MATRICES: 
 
INVOKABLE CAUSE PATTERNS: 
1 2 3 
 
0 0 X 
1 0 X 
0 1 1 
X 01 
0 1 0 
 
EACH ROW IS A TEST; EACH COLUMN IS AN INVOKABLE CAUSE 

INTERPRET ELEMENTS AS FOLLOWS: 
 

1: INVOKE THIS CAUSE IN THIS TEST 
0: SUPPRESS THIS CAUSE IN THIS TEST 
X: INVOKE OR SUPPRESS THIS CAUSE IN THIS TEST 

 
 
OBSERVABLE EFFECT PATTERNS: 
4 5 
0 1 
1 1 
1 0 
X 1 
1 1 
 
EACH ROW IS A TEST; EACH COLUMN IS AN ORSERVABLE EFFECT 

INTERPRET ELEMENTS AS FOLLOWS: 
 

1: THIS EFFECT SHOULD OCCUR IN THIS TEST 
0: THIS EFFECT SHOULD NOT OCCUR IN THIS TEST 
X: THIS EFFECT MAY OR MAY NOT OCCUR IN THIS TEST 
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FUNCTIONAL MATRIX: 
1  2  3  4  5  6 
T 
   T 
        T T 
               T 
        T         T 
 
EACH ROW IS A TEST; EACH COLUMN IS A FUNCTIONAL VARIATION 

INTERPRET ELEMENTS AS FOLLOWS: 
 

T: THIS FAULTY VARIATION DETECTED BY THIS TEST 
BLANK: THIS FAULTY VARIATION NOT DETECTED BY THIS TEST 

 
Figure 9. The new-function test library designed by TELDAP. 

 
 
 
 
THIS LIBRARY CONTAINS 4 TESTS DOCUMENTED IN CORRESPONDING 
ROWS OF THE FOLLOWING THREE MATRICES: 
 
INVOKABLE CAUSE PATTERNS: 
1 2 3  
 
0 0 1 
1 0 X 
0 1 1 
0 1 0 
 
EACH ROW IS A TEST; EACH COLUMN IS AN INVOKABLE CAUSE 

INTERPRET ELEMENTS AS. FOLLOWS: 
 

1:  INVOKE THIS CAUSE IN THIS TEST 
0:  SUPPRESS THIS CAUSE IN THIS TEST 
X: INVOKE OR SUPPRESS THIS CAUSE IN THIS TEST 
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OBSERVABLE EFFECT PATTERNS: 
4 5 
 
0 1 
1 1 
1 0 
1 1 
 
EACH ROW IS A TEST; EACH COLUMN IS AN OBSERVABLE EFFECT 
INTERPRET ELEMENTS AS FOLLOWS: 
 

1:  THIS EFFECT .SHOULD OCCUR IN THIS TEST 
0:  THIS EFFECT SHOULD NOT OCCUR IN THIS TEST 
X: THIS EFFECT MAY OR MAY NOT OCCUR IN THIS TEST 

 
 
FUNCTIONAL MATRIX: 
1 2 3 4 5 6 
T         T 
  T 
      T T 
      T      T 
 
EACH ROW IS A TEST; EACH COLUMN IS A FUNCTIONAL VARIATION 

INTERPRET ELEMENTS AS FOLLOWS: 
 

T: THIS FAULTY VARIATION DETECTED BY THIS TEST 
BLANK: THIS FAULTY VARIATION NOT DETECTED BY THIS TEST 

 
Figure 10. The old-function test library designed by TELDAP. 
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SUMMARY 
 
The focal point of this study is the process by which we develop program test libraries. 
As mentioned earlier, it makes no contribution to either the first step of the process where 
specifications and program listings are translated into functions, or to the final step where 
actual test cases are created. Its primary concern is the technology which promises to 
improve the design process that occurs between these two steps. 
 
The theme of the improvements can be summarized as the substitution of discipline for 
art and machines for man. These improvements are twofold: 
 

1. Introduction of the cause-and-effect graph as a vehicle for explicitly portraying 
the structure of a set of program functions. 
 
2. Adaptation of hardware-oriented, mathematically-based test pattern generation 
techniques to permit their application to program testing. 

 
The first item means that the identification of the functional variations eligible to be 
tested will be less artistic and partially mechanical. It is not yet evident which effort is 
greater -- creation of the cause-and-effect graph or today's manual generation of 
functional variation lists. Certainly the Boolean graph route is more systematic and 
rigorous and produces a set of variations that is a more reliable yardstick for measuring 
test coverage. Neither route eliminates the need for experience and judgment in the 
interpretation of frequently ambiguous, redundant and imprecise natural language 
specifications and in the analysis of often complex program logic with its obscure 
relationship to the functions implemented in it. 
 
The second improvement promises the automation of test library design yielding these 
benefits: 
 

a. More compact test libraries. 
 
b. More accurate test library documentation, particularly in the functional matrix. 
(Until now functional matrices seldom recorded the “free” coverage achieved by 
tests outside their assigned domain. Now all of this free coverage is documented.) 
 
c. Potentially a faster and cheaper process. 

 
At present TELDAP is bracketed by manual steps which compromise its potential 
benefits. This makes the future of such a tool highly dependent on the future of formal 
specification languages and test case generators. Given the former, the input to TELDAP 
could be mechanically defined. Given the latter, the output of TELDAP, in turn, could be 
mechanically converted to actual test cases. 
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APPENDIX A.  COMPREHENSIVE EXAMPLE 
 
 

 
 
NODES 12 
1 2 AND 7 
2 3 NOR 8 
4 5 OR 9 
6 DIRECT 10 
6 NOT 11 
8 9 NAND 12 
EXCLUSIVE 1 9 
INCLUSIVE 5 6 
INVOKABLE 1 2 3 4 5 6 9 
OBSERVABLE 7 10 11 12 
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FUNCTIONAL VARIATIONS: 
 
1.   IF CAUSE(S) 1 ABSENT THEN EFFECT 7 ABSENT 
 
2.   IF CAUSE(S) 2 ABSENT THEN EFFECT 7 ABSENT 
 
3.   IF CAUSE(S) 1 2 PRESENT THEN EFFECT 7 PRESENT 
 
4.   IF CAUSE(S) 2 PRESENT THEN EFFECT 8 ABSENT 
 
5.   IF CAUSE(S) 3 PRESENT THEN EFFECT 8 ABSENT 
 
6.   IF CAUSE(S) 2 3 ABSENT THEN EFFECT 8 PRESENT 
 
7.   IF CAUSE(S) 4 PRESENT THEN EFFECT 9 PRESENT 
 
8.   IF CAUSE(S) 5 PRESENT THEN EFFECT 9 PRESENT 
 
9.   IF CAUSE(S) 4 5 ABSENT THEN EFFECT 9 ABSENT 
 
10. IF CAUSE(S) 6 ABSENT THEN EFFECT 10 ABSENT 
 
11. IF CAUSE(S) 6 PRESENT THEN EFFECT 10 PRESENT 
 
12. IF CAUSE(S) 6 PRESENT THEN EFFECT 11 ABSENT 
 
13. IF CAUSE(S) 6 ABSENT THEN EFFECT 11 PRESENT 
 
14. IF CAUSE(S) 8 9 PRESENT THEN EFFECT 12 ABSENT 
 
15. IF CAUSE(S) 8 ABSENT THEN EFFFCT 12 PRESENT 
 
16. IF CAUSE(S) 9 ABSENT THEN EPFRCT 12 PRESENT 
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NEW FUNCTION TEST LIBRARY: 
 
THIS LIBRARY CONTAINS 10 TESTS DOCUMENTED IN 
CORRESPONDING ROWS OF THE FOLLOWING THREE MATRICES: 
 
 
INVOKABLE CAUSE PATTERNS: 
 
1  2  3  4  5  6  9 
0  1  X X X X X 
1  0  X 0  0  1  0 
1  1  X 0  0  1  0 
X 1  0  X X X X 
X 0  1  X X X X 
0  0  0  1  0  1  1 
0  0  0  0  1  X 1 
0  X X X  1  0 1 
0  1  X X  X X 1 
X 0  0  0  0  1  0 
 
EACH ROW IS A TEST; EACH COLUMN IS AN INVOKABLE CAUSE 
INTERPRET ELEMENTS AS FOLLOWS: 
 

1: INVOKE THIS CAUSE IN THIS TES'T 
0: SUPPRESS THIS CAUSE IN THIS TEST 
X: INVOKE OR SUPPRESS THIS CAUSE IN THIS TEST 
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OBSERVABLE EFFECT PATTERNS: 
        1  1  1 
7  8  0  1  2 
 
0  0  X X  1 
0  X 1  0   1 
1  0  1  0   1 
X 0  X X  1 
0  0  X X  1 
0  1  1  0  0 
0  1  X X  0 
0  X 0  1  X 
0  0  X X  1 
0  1  1  0   1 
 
EACH ROW IS A TEST; EACH COLUMN IS AN OBSERVABLE EFFECT 
INTERPRET ELEMENTS AS FOLLOWS:  

1: THIS EFFECT SHOULD OCCUR IN THIS TEST 
0: THIS EFFECT SHOULD NOT OCCUR IN THIS TRST 
X: THIS EFFECT MAY OR MAY NOT OCCUR IN THIS TEST 

 
 
 
FUNCTIONAL MATRIX: 
 
                                    1  1  1  1  1  1  1 
1  2  3  4  5  6  7  8  9  0  1  2  3  4  5  6 
T 
    T                                  T T 
        T                              T T 
           T 
               T 
                    T  T              T T     T 
                    T      T                     T 
                                   T          T 
T                                                     T 
                    T         T       TT              T 
 
EACH ROW IS A TEST; EACH COLUMN IS A FUNCTIONAL VARIATION 
INTERPRET ELEMENTS AS FOLLOWS: 

T: THIS FAULTY VARIATION DETECTED BY THIS TEST 
BLANK: THIS FAULTY VARIATION NOT DETECTED BY THIS TEST 
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OLD FUNCTION TEST LIBRARY: 
 
THIS LIBRARY CONTAINS 6 TESTS DOCUMENTED IN CORRESPONDINC 
ROWS OF THE FOLLOWING THREE MATRICES: 
 
 
INVOKABLE CAUSE PATTERNS: 
1  2  3  4  5  6  9 
 
0  1  0  X 1  0  1 
1  0  1  0  0  1  0 
1  1  X 0  0  1  0 
0  0  0  1  0  1  1 
0  0  0  0  1 X  1 
X 0  0  0  0  1  0 
 
EACH ROW IS A TEST; EACH COLUMN IS AN INVOKABLE CAUSE 
INTERPRET ELEMENTS AS FOLLOWS: 

1: INVOKE THIS CAUSE IN THIS TEST 
0: SUPPRESS THIS CAUSE IN THIS TEST 
X: INVOKE OR SUPPRESS THIS CAUSE IN THIS TEST 

 
 
OBSERVABLE EFFECT PATTERNS: 
        1  1  1 
7  8  0  1  2 
 
0  0  0  1  1 
0  0  1  0  1 
1  0  1  0  1 
0  1  1  0  0 
0  1  X X  0 
0  1  1  0  1 
 
EACH ROW IS A TEST; EACH COLUMN IS AN OBSERVABLE EFFECT 
INTERPRET ELEMENTS AS FOLLOWS: 

1: THIS EFFECT SHOULD OCCUR IN THIS TEST 
0: THIS EFFECT SHOULD NOT OCCUR IN THIS TEST 
X: THIS EFFECT MAY OR MAY NOT OCCUR IN THIS TEST 

 



 28

FUNCTIONAL MATRIX: 
 
                                    1  1  1  1  1  1  1 
1  2  3  4  5  6  7  8  9  0  1  2  3  4  5  6 
 
T         T                      T          T     T 
    T         T                      T  T 
        T                             T  T 
                    T T              T  T      T 
                    T     T                       T 
                    T          T     T  T             T 
 
EACH ROW IS A TEST; EACH COLUMN IS A FUNCTIONAL VARIATION 
INTERPRET ELEMENTS AS FOLLOWS: 

T: THIS FAULTY VARIATION DETECTED BY THIS TEST 
BLANK: THIS FAULTY VARIATION NOT DETECTED BY THIS TEST 

 
 
 

APPENDIX B. TELDAP PROGRAM 
 
[Editor’s Note:  This section had the APL code for the original program which began the 
automation of this process.] 
 


