

BenderRBT V8.0

Requirements-Based Testing

Bender RBT Inc.’s BenderRBT is a requirements-based, functional test case design system that
drives clarification of application requirements and designs the minimum number of test cases
for maximum functional coverage. By thoroughly evaluating application requirements for errors
and logical inconsistencies, BenderRBT enables project teams to refine and validate the
requirements earlier in the development cycle. The earlier in the cycle requirement errors are
found and corrected, the less costly and time-consuming they are to fix. BenderRBT uses the
requirements as a basis to design the minimum number of test cases needed for full functional
coverage. BenderRBT then allows project teams to review both the requirements and the test
cases in a variety of formats, including a logic diagram and structured English functional
specification, to ensure that the requirements are correct, complete, fully understood and testable.

Most testing activities, and the tools that support them, can be divided into the following seven
activities:

 Define Test Completion Criteria

 Design Test Cases

 Build Test Cases – Including scripting and data provisioning

 Execute Tests

 Verify Test Results

 Verify Test Coverage

 Manage the Test Library

BenderRBT V8.0 Product Summary

 2

BenderRBT addresses defining the test completion criteria, designing functional tests to meet the
necessary criteria, verifying the test coverage, and assists in verifying test results and in
maintaining the test library.

Feature/Benefit Table
Highly optimized
algorithms

 Minimizes the number of test cases needed to achieve maximum
functional coverage

 Minimizes the time required to build, manage and maintain tests
 Enables 80-90% code coverage
 Identifies nodes where observability issues may mask errors

Automated test case
generation

 Ensures a consistently high level of coverage, independent of
tester skill levels and experience

 Details the test cases in your choice of format
 Lists causes and associated effects for each test to allow easier test

script development, review by stakeholders, approval and
implementation

Quantitative test
completion criteria

 Allows management to track status of testing within and across
projects in a consistent manner

Natural language test
cases

 Test cases are designed in a natural language, such as English, for
easy review

 Test cases can be used by users to validate completeness and
correctness of requirements

BenderRBT V8.0 Product Summary

 3

Target platform
independent

 Allows tests to be designed for any type of application running on
any target platform in any language

 Ensures reusability and portability of test scripts
 Protects investment in team member skills

Coverage analyzer Optimizes test planning
 Tracks test status throughout the test process

Flawed logic detection Flags logical inconsistencies in requirements for faster correction
Capture/playback
integration

 Accelerates test script implementation in major capture/playback
tools

Coverage matrix Shows which functional variations are covered by each test case
Definition matrix Summarizes input and output conditions for each test case for at-a-

glance review
Functional
specification
generation

 Provides an "as-built" specification for the application under test
 Ensures that the specification and test cases are in sync

Logic diagram Enables project team to view the relationships between nodes
graphically for better understanding

Integration with
requirements
management

 Allows traceability between requirements and test cases
 Generates a Functional Specification from the Cause-Effect Graph

model which can be exported as a rich text file (RTF) and brought
into an RM tool or into a word processor

Integration with
playback tools and test
library managers

 RBT supports TestIF – the OMG’s Test Integration Facility
 There direct exports to Quality Center and TOSCA
 The Test Definition Matrix and Functional Coverage Matrix can

be exported as comma delimited files and brought into Excel
 All of the text based reports can be exported as RTF files and

brought into a word processor.
Synergy with code
coverage monitors

 BenderRBT also has strong synergy with code coverage monitors.
These tools keep track of which statements and branches have
been executed by the tests. While important to measuring the
thoroughness of the tests, monitors are underutilized in the
industry. This is because they reveal that most test libraries rarely
cover more the 40% of the code. Using BenderRBT the code
coverage of tests designed prior to coding typical approaches 90%.
Only a slight effort is then required to complete the code coverage.

Choice of Two Test Design Methods

BenderRBT comes with two distinct test case design engines. When you invoke RBT directly
you will be given a choice of which you would like to use.

BenderRBT V8.0 Product Summary

 4

RBT Test Design Engine Options

Cause-Effect Graphing (C-E Graphing) takes you to the Graphing based test engine. Quick
Design (QD) takes you to the Pairs-Wise based test engines. This includes Orthogonal Pairs and
Optimized Pairs. C-E Graphing is intended for business critical, mission critical, and/or safety
critical functions. It ensures that you not only got the right answer, but that you got the right
answer for the right reason. It addresses the fact that multiple defects can sometimes cancel each
other out. C-E Graphing ensures that defects are propagated to an observable point where testers
can see the problem. QD is aimed at testing user interfaces (e.g., web pages, screens in client
server applications. It is also applicable in designing configuration tests and quick shake-downs
of even critical functions. Both C-E Graphing and QD address reducing the nearly infinite
number of potential tests down to small, highly optimize test libraries. They both have full
constraint rules support (One and Only One, Exclusive, Inclusive, Requires, and Masks) to
ensure that the tests created are physically possible while still supporting full negative testing.

BenderRBT Cause-Effect Graph Based Test Design Engine

Better Requirements
Developing high-quality applications begins with the requirements. Requirements must be
deterministic and unambiguous in order to ensure that the application is developed and tested
accurately. RBT assists project teams in analyzing and reviewing the application requirements to
eliminate logical inconsistencies and errors. Using cause-effect graphing, an innovative approach
which graphically displays relationships and constraints between application nodes (inputs and
outputs), the project team can analyze every aspect of the functional requirements in RBT. RBT
then evaluates the recorded information to identify precedence problems in relations and logical
errors. RBT provides detailed analysis information in a variety of easy-to-read formats. Analysts
and project stakeholders collaboratively can review the natural language test cases generated by
RBT, enabling them to identify and correct any requirement errors earlier in the development
cycle.

Cause-Effect Graphing
A proven technique for effective requirements validation and test case design, cause-effect
graphing is the process of transforming specifications into a graphic representation. This graphic
representation depicts the functional relationships and conditions present in the requirements,
illustrating how each input relates to every other input, as well as every output. Constraints and

BenderRBT V8.0 Product Summary

 5

observability of nodes also are established during this process, allowing the project team to
identify potential problem areas. In developing the cause-effect graph, the test team evaluates the
requirements for completeness, consistency, sufficient level of detail and lack of ambiguity,
often finding defects that otherwise would not be found until integration testing.

BenderRBT’s Graphic Front-End

The graphic front end to RBT allows project teams to quickly create cause-effect graphs,
complete with node relationships, constraints, and attributes. When a node is created, users are
prompted to enter the required attributes, reducing the risk of incompletely defined nodes. When
the cause-effect graph is completed, RBT then designs the test cases based on the requirements
depicted in the graph. RBT also uses the cause-effect graph to further evaluate the requirements
for logical consistency. The project team can use the test cases generated by RBT to review
requirements with stakeholders, or they can use the structured English requirements document
automatically generated by RBT. The more readable the requirements are, the more likely the
project team is to develop the right application.

BenderRBT V8.0 Product Summary

 6

BenderRBT's Script Test Definitions Report details every step of the test cases designed,
including the input conditions and the expected results (or effects) of each step.

Localization Support

All of the user entered information – Graph Title, Notes, Node Names, Node Descriptions – can
be entered in any language. RBT will then generate the all of its output using this information.
Here is the above graph built using Chinese:

Here is an example of a test generated:

BenderRBT V8.0 Product Summary

 7

Minimum Tests
In many testing environments, tests are developed using “gut feel” or combinatorics-based
methods. Gut feel testing relies on individual testers to develop the tests to be used, while
combinatorics-based testing uses all possible combinations of the inputs. While these test
development methods are widely used, they do not ensure full functional coverage, let alone
guarantee the minimum number of required tests. BenderRBT uses a mathematically rigorous
algorithm to determine the minimum number of test cases required for full functional test
coverage.

For instance, in an application with 37 inputs, an exhaustive combinatorics-based approach will
result in over 130 billion possible test cases. A gut feel testing approach might reduce this
number to 50 or 100 tests, but there is no way to know whether they are the right tests for the
application. Because the skill level and experience of the individual testers may vary, there is no
way to guarantee a high level of functional coverage. In this example, RBT reduces the possible
number of test cases to only 22 in a one second. Since these tests are based on the actual,
documented requirements, the test team will be testing 100% of the application’s functionality.
This minimum set of tests cases also significantly decreases the amount of time required to
design and build tests, reducing the overall testing effort.

In every comparison study our clients have done over the years, RBT has reduced the number of
necessary tests by a minimum 4X for equivalent coverage. For groups just using “gut feel”
testing it has been closer to a 10X reduction.

Maximum Coverage
Using a gut feel test design approach, the test team can not be sure that their tests cover 100% of
the application’s functionality. In fact, studies have shown that in gut feel testing environments,
the tests only cover an average of 30-40% of the application’s functionality. RBT’s proven
automated test case design approach ensures that the functional test coverage will achieve 100%,

BenderRBT V8.0 Product Summary

 8

with the minimum number of tests. RBT carefully evaluates all of the cause and effect
information it is given to reduce the possible number of test cases to a minimum set that is
functionally complete. RBT also cross-references the functions with the test cases. When
evaluated with the status of executed tests, this information allows the project team to calculate
the percentage of functionality running correctly. Management then can make an informed
decision about whether the application is ready for production.

Protecting Your Investment In Test Cases
The Cause-Effect Graphing process is an iterative one. You generally graph, review the results,
and tune the graph until you are sure the requirements are solid and that the graph reflects those
requirements. You then implement the test cases. When you commit to building the executable
tests you want to ensure that RBT knows that this set of tests is the one you are implementing.
This will allow you to protect your investment in these tests.

If RBT if aware of existing tests, it can evaluate those tests as the requirements and graph
change. How much coverage do the old tests give you? What new tests will you need? What
modifications have to be made to the old tests? RBT can answer those questions for you.

Therefore, RBT gives you a number of options in generating test cases.

Test Generation Options

The Run New option will design a new set of tests based on the graph you have just entered.

The Run Old option will evaluate the coverage of a set of existing tests against the current
version of the graph.

The Run Both option will evaluate the coverage of a set of existing tests and then supplement
these tests to complete the coverage of the graph.

Note: This feature can be used to factor in test cases that were not designed by RBT. There is a
dialog for allowing the user to tell RBT about existing test cases, regardless of their source.

BenderRBT V8.0 Product Summary

 9

Matrix Views
When planning the testing phase, it is important to understand the functional coverage of each test
case, as well as the state of each node in each test case. RBT provides two matrix views that show
this information in detail. The Coverage Matrix shows which functional variations are covered by
each test. It also illustrates that every test exercises at least one functional variation not covered
by any other test. Using this matrix, the test team can be sure that they are testing 100% of the
application’s functionality. RBT’s Definition Matrix summarizes the input and output conditions
included in each of the test cases generated by RBT. Both of these matrixes may be exported to
Excel for further annotation by the tester.

BenderRBT’s Functional Coverage Matrix identifies which functional variations are in
which test cases. An “X” means that the variation is in two or more tests. A “#” means the

variation is only in one test.

BenderRBT V8.0 Product Summary

 10

BenderRBT’s Coverage Analysis Matrix allows the project team to quantifiably determine

the status of testing. When one or more test cases are selected, the Coverage Analysis
function calculates the selected test cases' percentage of weak and strong functional

coverage.

BenderRBT V8.0 Product Summary

 11

Fewer Tests Dialog

This feature allows you to enter in a number less than or equal to the number of total tests
and have RBT determine which is the optimal subset of tests – i.e. which tests would give
you the greatest possible coverage.

BenderRBT’s Definition Matrix uses a table format to display the state of each node in
each test case, allowing at-a-glance understanding of each test case.

BenderRBT V8.0 Product Summary

 12

Strong Support For Agile

Agile projects are highly iterative within and across releases. Common problems on agile
projects are that tests are often a sprint behind and specifications are never fully documented. In
addition to the ability to protect the investment in tests implemented from prior versions of the
graphs, RBT can generate a Functional Specification from the models.

This user story from a dental insurance application:
 “Determine the amount to be paid for each dental insurance claim.”

Resulted in this Cause-Effect Graph:

Which in turn generated tests such as:

BenderRBT V8.0 Product Summary

 13

And generated this Functional Specification:

This ensures that the code, the tests, and the specifications are all provably in sync at the time of
the release.

BenderRBT V8.0 Product Summary

 14

Quick Design – Pair-Wise Based Test Design Engines

Quick Design has multiple test case design engines, all based on Pair-Wise testing. One is used
for Orthogonal Pairs – create a balanced set of tests with pairs in equal numbers of tests to the
extent possible. This is used fro designing tests for configuration testing and for creating seed
tests for performance testing. The two other engines are for Optimized Pairs testing – cover the
set of pairs with the minimal number of tests.

Quick Design allows you to design tests in just minutes. You just identify each test input
Variable. For each Variable you define the States you want to test.

Defining a Variable in Quick Design

Defining a State in Quick Design

BenderRBT V8.0 Product Summary

 15

QD concatenates the Variable description with the State description in the generated test scripts.
This saves typing and ensures consistent wording of test scripts. In the above example the final
description would read “The customer is a Corporate customer”.

If needed, you then apply constraints across the Variables/States which identify combinations of
data which are physically impossible at this point in the system. However, you still want to do
full negative testing.

Defining a Constraint in Quick Design

In this example the constraint rule is that only corporate customers may have building loans.
Other functions prior to this one would have rejected any attempt by retail customers or
government customers from getting this type of loan. The production data base would not
contain any building loans for any customer other than corporate customers. Therefore, we do
not want to generate any tests at this point contrary to this rule. Note, however, that in testing the
predecessor functions you should have tried creating a building loan for the other customer
types. The test result should have been that the loan application was rejected.

BenderRBT V8.0 Product Summary

 16

Quick Design then generates all possible pairs across the Variables/States. This is documented
in the Pairs Report.

Quick Design Pairs Report

Note that two of the pairs have a yellow “I” next to them. These are the infeasible pairs – i.e.
they violated the constraint we set up.

BenderRBT V8.0 Product Summary

 17

Quick Design then merges the pairs into tests, again ensuring that no constraints are violated.
You have two choices in generating tests: Orthogonal Pairs or Optimized Pairs. In Orthogonal
Pairs testing each pair occurs the same number of times across the set of test cases. In Optimized
Pairs each pair is in at least one test. The goal is to do this in the fewest number of tests possible.
We generally recommend orthogonal pairs for configuration testing and optimized pairs for
function testing.

Quick Design Test Scripts Report

As in the Cause-Effect Graphing component, you have the options of creating new tests,
evaluating old tests, supplementing old tests as needed, and revising descriptions. You can also
define pre-existing tests not created by Quick Design.

BenderRBT V8.0 Product Summary

 18

As in Cause-Effect Graphing, you get the coverage report.

Quick Design Pair Coverage Report
Optimized Tests

Quick Design also has a utility to calculate coverage based on which tests passed. You can also
define subsets of the set of tests with maximum coverage.

BenderRBT V8.0 Product Summary

 19

You also get the Test Definition Matrix.

Quick Design Test Definition Matrix

Minimum System Requirements
 Windows XP, Vista, Win7, Win 8, Win10
 128 Mb RAM
 30 Mb hard disk space for the programs, documentation, and examples
 Free disk space for work files (amount of free space required will vary by organizational

needs)

